个人简历:
南开大学杰出教授,先后入选国家科技创新领军人才、国家四青人才、天津市杰出青年基金、天津市“131”创新型人才培养工程第一层次、英国皇家化学会会士等。主持或参与国家重点专项、国家自然基金、天津基金、云南省科技专项、企业项目等20余项,获天津市科技进步一等奖和天津市自然科学二等奖。以第一或通讯作者在Science等刊物上发表SCI文章约180篇,授权发明专利10项,成果受到了来自美国化学工程杂志(C&EN),自然(Nature),福克斯(Fox),光明日报等媒体和杂志的关注和报道。
研究方向介绍:
Ø 气体数字化编辑:开展深度学习,构建气味分子图谱,实现气味数字化;利用数字化气味,拓展在嗅觉机器人、智能传感、机场安全、火灾预报等领域应用;发展气味产生和室温催化降解技术,实现气味分子的实时精准调控
Ø 高温能源器件:设计高效半导体氧化物,提升各类高温能源电池效率,实现燃料和能源的高效转换
社会兼职和服务:
Ø 天津市电子学会副理事长
Ø 中国稀土学会催化专委会委员
Ø 中国恶臭学会专委会委员
Ø 中国材料学会计算分会委员
Ø 中国化学会高级会员
Ø 中国环境学会高级会员
教育背景:
Ø 博士 2008.01-2011.02 美国 德州大学达拉斯分校 材料科学与工程
Ø 访问 2006.06-2007.12 美国 德州大学阿灵顿分校 物理学
Ø 硕士 2002.09-2005.12 中国 中国科学院固体物理研究所学士凝聚态物理
Ø 学士 1998.09-2002.06 中国 河南师范大学 物理学
工作经历:
Ø 教授 2013.07-现在 中国 南开大学
Ø 高级工程师 2012.09-2013.06 美国 万国半导体公司
Ø 客座教授 2012.08-2018.12 美国 德州大学达拉斯分校材料与工程系
Ø 访问学者 2012.06-2013.06 美国 斯坦福大学电子工程学院
Ø 研究员 2011.06-2012.09 美国 Nanostellar Inc.
科研项目:
Ø 国家重点研发计划,2022YFA504000,高稳定非贵金属析氢/析氧电催化剂理性设计与宏量制备,2023/01-2027/12、学术骨干。
Ø 国家自然科学基金面上项目,21975136,基于过渡金属莫来石电催化剂的理性设计,2020/01-2023/12,主持。
Ø 国家重点研发计划,2016YFB0901600,高功率低成本规模超级电容器的基础科学与前瞻技术研究项目,2016/07-2020/12,学术骨干。
Ø 国家自然科学基金面上项目,21573117,基于莫来石材料的氮氧污染物净化的催化研究,2015/01-2019/12,主持。
Ø 国家自然科学基金青年项目,11304161,III-V族半导体表面和界面的氧化和钝化研究,2014/01-2016/12,主持。
Ø 天津市自然科学基金面上项目,13JCYBJC41100,半导体异质结在光催化应用中的研究,2013/10-2016/09,主持。
Ø 南开大学百名青年学科带头人,2013-2016,主持。
Ø 2017年入选天津市首届杰出青年基金,17JCJQJC45100,基于锰基材料的大气脱硝催化剂的理性设计研究,主持。
Ø 2018年入选天津市131人才计划第一层次人选,2019/01-2020/12,主持。
Ø 2018年天津市重点研发计划,18ZXSZSF00060, 满足移动源柴油机国VI标准排放后处理装置研发与应用,2019/01-2020/12,子课题负责人。
学生培养:
课题组自2013年筹建以来,培养了硕博研究生17人,本科毕业设计20余人。指导的研究生和本科生,获南开十杰、研究生国家奖学金、华为奖学金等奖励。多次获得天津市和南开大学优秀博士学位论文奖励。多名硕博士研究生毕业后在天津大学、南开大学、华为、比亚迪、中国汽车研究中心等高校和企业工作,其中四名毕业生以教授职称入职美国德州大学、武汉大学、河北师范大学和天津工业大学,团队因此获得“南开大学先进研究生团队(2018)”。
计划每年招收硕士生3-4名,博士生2-3名,接收校内外保送生和推免生。课题组研究方向为多学科交叉的新型领域,欢迎对科研有热情的、具有人工智能、微纳电子、电气工程、物理、化学、材料、环境、工业自动化等专业的同学报考!
长期招聘博士后与科研助理(本科以上学历)。
个人邮箱:weichaowang@nankai.edu.cn。
讲授课程:
本科生:《固体与半导体物理》
部分代表论文:
1. W. Wang*, G. McCool, N. Kapur, G. Yuan, B. Shan, M. Nguyen, U. M. Graham, B. H. Davis, G. Jacobs, K. Cho*, X. Hao*. Mixed-Phase Oxide Catalyst Based on Mn-Mullite (Sm, Gd)Mn2O5 for NO Oxidation in Diesel Exhaust, Science, 2012, 337, 832-835 (IF: 44.7);
2. S. Zhang, W. Wang, L. Wang, S. Gao, X. Duan, R. Hao, G. Chen, W. Wang, C. Zhao*, W. Wang. Enhancing stability and catalytic activity of layered MnO2 via interfacing with YMn2O5 towards H2O2 decomposition, Applied Catalysis B: Environment and Energy, 2025, 361124699 (IF: 20.3);
3. H. Li, W. Wang, J. Xu, A. Wang, X. Wan, L. Yang, H. Zhao, Q. Shan, C. Zhao*, S. Sun*, W. Wang*. Mn-Based Mullites for Environmental and Energy Applications, Advanced Materials, 2024, 36, 2312685 (IF: 27.4);
4. H. Li, J. Xu, L. Yang, W. Wang, B. Shao, F. Cheng, C. Zhao*, W. Wang*. Advancing Mn-based electrocatalysts: evolving from Mn-centered octahedral entities to bulk forms, eScience, 2024, 100368 (IF: 42.9);
5. R. Wen, H. Li, H. Zhao, K. Ren, R. Hao, K. He, C. Zhao, X. Wan*, W. Wang*. Enhancing Ozone Decomposition in Humid Environments through Carbon Doping to Disrupt the Hydrogen Bond Network in Mullite YMn2O5, Environmental Science & Technology, 2024, 58, 20687-20698 (IF: 11.7);
6. C. Zhao, H. Li, W. Wang, J. Xu, B. Shao, X. Wan, M. Yu, F. Cheng, W. Wang*. Revealing the Critical Role of the Lone Pair Electrons of Bi3+ in Electrocatalytic Oxygen Reduction Reaction on Mn-Based BiMn2O5 Mullite Surface, Advanced Functional Materials, 2024, 2416257 (IF: 18.5);
7. X. Wan, K. Shi, H. Li, F. Shen, S. Gao, X. Duan, S. Zhang, C. Zhao, M. Yu, R. Hao, W. Li, G. Wang, M. Peressi, Y. Feng, W. Wang*. Catalytic Ozonation of Polluter Benzene from -20 to >50 °C with High Conversion Efficiency and Selectivity on Mullite YMn2O5, Environmental Science & Technology, 2023, 57(22): 8435-8445 (IF: 11.7);
8. A. Wang, W. Wang, J. Xu, A. Zhu, C. Zhao, M. Yu, G. Shi, J. Yan, S. Sun, W. Wang*. Enhancing Oxygen Evolution Reaction by Simultaneously Triggering Metal and Lattice Oxygen Redox Pair in Iridium Loading on Ni‐Doped Co3O4, Advanced Energy Materials, 2023, 13, 43, 2302537 (IF: 24.4);
9. A. Wang, X. Zhang, S. Gao, C. Zhao, S. Kuang, S. Lu, J. Niu, G. Wang, W. Li, D. Chen, H. Zhang, X. Zhou, S. Zhang, B. Zhang, W. Wang*, Fast-Charging Zn–Air Batteries with Long Lifetime Enabled by Reconstructed Amorphous Multi-Metallic Sulfide, Advanced Materials, 2022, 34, 2204247 (IF: 27.4);
10. L. Wang, W. Hua, X. Wan, Z. Feng, Z. Hu, H. Li, J. Niu, L. Wang, A. Wang, J. Liu, X. Lang, G. Wang, W. Li, Q. Yang*, W. Wang*. Design Rules of a Sulfur Redox Electrocatalyst for Lithium‐sulfur Batteries, Advanced Materials, 2022, 34, 2110279 (IF: 27.4);
11. F. Shen, X. Wan, L. Wang, C. Zhao, S. Zhang, A. Dong, K. Shi, H. Zhang, X. Zhou, K. He, Y. Feng, W. Wang*, Formaldehyde Decomposition from -20 °C to Room Temperature on a Mn-Mullite YMn2O5 Catalyst, Environmental Science & Technology, 2022, 56, 18041-18049 (IF: 11.7);
12. X. Wan, L. Wang, S. Zhang, H. Shi, J. Niu, G. Wang, W. Li, D. Chen, H. Zhang, X. Zhou, W. Wang*, Ozone Decomposition below Room Temperature Using Mn-Based Mullite YMn2O5, Environmental Science & Technology, 2022, 56, 8746-8755 (IF: 11.7);
13. L. Wang, Z. Hu, X. Wan, W. Hua, H. Li, Q. Yang*, W. Wang*. Li2S4 Anchoring Governs the Catalytic Sulfur Reduction on Defective SmMn2O5 in Lithium-Sulfur Battery, Advanced Energy Materials, 2022, 2200340 (IF: 24.4);
14. C. Zhao, A. Zhu, S. Gao, L. Wang, X. Wan, A. Wang, W. Wang, T. Xue, S. Yang, D. Sun, W. Wang*. Phonon Resonance Catalysis in NO Oxidation on Mn-Based Mullite, ACS Catalysis, 2022, 12, 12113-12122 (IF: 11.3);
15. A. Wang, C. Zhao, M. Yu, W. Wang*. Trifunctional Co nanoparticle confined in defect-rich nitrogen-doped graphene for rechargeable Zn-air battery with a long lifetime, Applied Catalysis B-Environment and Energy, 2021, 281, 119514 (IF: 20.3);
16. L. Wang, X. Yao, D. Chen. J. Wang. Z. Zhang. J. Liu. T. Lin. W. Wang, Z. Hong, F. Huang, W. Wang*. Design Rules of Pseudocapacitive Electrode Materials: Ion Adsorption, Diffusion, and Electron Transmission over Prototype TiO2, Science China-Materials, 2021, 65, 391-399 (IF: 6.8);
17. C. Zhao, X. Zhang, M. Yu, A. Wang, L. Wang, L. Xue, J. Liu, Z. Yang, W. Wang*. Cooperative Catalysis toward Oxygen Reduction Reaction under Dual Coordination Environments on Intrinsic AMnO3-Type Perovskites via Regulating Stacking Configurations of Coordination Units, Advanced Materials, 2020, 32, 2006145 (IF: 27.4);
18. G. Zhang, D. Sebastian, X. Zhang, Q. Wei, C. L. Vecchio, J. Zhang, V. Baglio, W. Wang*, S. Sun*, A. S. Arico*, A. C. Tavares*. Engineering of a Low-Cost, Highly Active, and Durable Tantalate-Graphene Hybrid Electrocatalyst for Oxygen Reduction, Advanced Energy Materials, 2020, 10(24), 2000075 (IF: 24.4);
19. A. Dong, S. Gao, X. Wan, L. Wang, T. Zhang, L. Wang, X. Lang, W. Wang*. Labile Oxygen Promotion of the Catalytic Oxidation of Acetone over a Robust Ternary Mn-based Mullite GdMn2O5, Applied Catalysis B-Environment and Energy, 2020, 271, 118932 (IF: 20.3);
20. J. Liu, H. Liu, H. Chen, X. Du, B. Zhang, Z. Hong, S. Sun, W. Wang*. Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach, Advanced Science, 2020, 7(1), 1901614 (IF: 14.3);
21. T. Zhang, X. Lang, A. Dong, X. Wan, S. Gao, L. Wang, L. Wang, W. Wang*. Difference of Oxidation Mechanism between Light C3-C4 Alkane and Alkene over Mullite YMn2O5 Oxides Catalyst, ACS Catalysis, 2020, 10(13), 7269-7282 (IF: 11.3);
22. L. Wang, H. Li, J. Liu, X. Lang, W. Wang*. Labile Oxygen Participant Adsorbate Evolving Mechanism to Enhance Oxygen Reduction in SmMn2O5 with Double-coordinated Crystal Fields, Journal of Materials Chemistry A, 2020, 9(1), 380-389 (IF: 10.7);
23. C. Dong, X. Zhang, J. Xu, R. Si, J. Sheng, J. Luo*, S. Zhang, W. Dong, G. Li, W. Wang*, F. Huang*. Ruthenium‐Doped Cobalt-Chromium Layered Double Hydroxides for Enhancing Oxygen Evolution through Regulating Charge Transfer, Small, 2020, 16, 5, 1905328 (IF: 13.3);
24. Z. Gao, J. Liu, X. Chen, J. Mao, H. Liu, T. Ma, L. Li, W. Wang*, X. Du*. Engineering NiO/NiFe LDH Intersection to Bypass Scaling Relationship for Oxygen Evolution Reaction via Dynamic Tridimensional Adsorption of Intermediates, Advanced Materials, 2019, 31, 1804769 (IF: 27.4);
25. D. Liu, C. Wang, Y. Yu, B. Zhao, W. Wang*, Y. Du*, B. Zhang*. Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition Metal Oxides, Chem, 2019, 5(2), 376-389 (IF: 19.1);
26. F. Yu, L. Du, G. Zhang*, F. Su, W. Wang*, S. Sun*. Electrode Engineering by Atomic Layer Deposition for Sodium-Ion Batteries: From Traditional to Advanced Batteries, Advanced Functional Materials, 2019, 1906890 (IF: 18.5);
27. T. Zhang, H. Li, Z. Yang, F. Cao, L. Li, H. Chen, H. Liu, K. Xiong, J. Wu, Z. Hong, W. Wang*. Electrospun YMn2O5 Nanofibers: A Highly Catalytic Activity for NO Oxidation, Applied Catalysis B-Environment and Energy, 2019, 247, 133-141 (IF: 20.3);
28. L. Wen, X. Zhang, J. Liu, X. Li, C. Xing, X. Lyu, W. Cai, W. Wang*, Y. Li*. Cr-Dopant Induced Breaking of Scaling Relations in CoFe Layered Double Hydroxides for Improvement of Oxygen Evolution Reaction, Small, 2019, 15, 35, 1902373 (IF: 13.3);
29. J. Zhang, J. Liu, L. Xi, Y. Yu, N. Chen, S. Sun, W. Wang*, K. M. Lange, B. Zhang*. Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction, Journal of the American Chemical Society, 2018, 11(140), 3876-3879 (IF: 14.4);
30. X. Wang, J. Liu, Z. Liu, W. Wang*, J. Luo, X. Han, X. Du, S. Qiao, J. Yang*. Identifying the Key Role of Pyridinic-N-Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER, Advanced Materials, 2018, 30, 1800005 (IF: 27.4);
31. C. Zhao, M. Yu, Z. Yang, J. Liu, S. Chen, Z. Hong, H. Chen, W. Wang*. Oxygen Reduction Reaction Catalytic Activity Enhancement over Mullite SmMn2O5 via Interfacing with Perovskite Oxides, Nano Energy, 2018, 51, 91-101 (IF: 16.8);
32. Z. Wu, C. Wang, B. Zhao*, J. Dong, F. Lu, W.H Wang, W. Wang*, G. Wu, J. Cui, A Semi-Conductive Copper-Organic Framework with Two Types of Photcatalytic Activity, Angewandte Chemie International Edition, 2016, 55, 4938-4942 (IF: 16.1);
33. Y. Li, X. Zhang, H. Li, H. Yoo, X. Chi, Q. An, J. Liu, M.Yu, W. Wang*, Y. Yao*. Mixed-phase Mullite Electrocatalyst for pH-neutral Oxygen Reduction in Magnesium-air Batteries, Nano Energy, 2016, 27, 8-16 (IF: 16.8).